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ABSTRACT: The resolution and detection capabilities of synthetic aperture radars  (SAR)  and optical sensors have 

increased significantly in the past decade to detect damages of earthquakes. However, the processing and analysis of 

large-area images obtained by these sensors is labor-intensive, time-consuming, and requires domain expertise. 

Recently, the use of neural networks has been a great asset in this regard. This paper proposes a neural network that 

combines relevant features from a SAR and an optical sensor. This multi-sensor-fusion neural network has been used 

for earthquake damage detection in Sulawesi, Indonesia. We also propose inverse-mapping dynamics that aims to 

understand the significant input features that are impactful for the output of the neural network. 

 

1.  INTRODUCTION 

 

Damage mapping is essential in the prevention of life and property post a disaster. Large-scale disasters such as 

earthquakes and landslides damage the transportation routes making the calamity stricken area inaccessible via ground. 

SAR satellites and optical satellites play a vital role in this scenario by providing a large amount of valuable 

information about the area of interest (AOI). SAR sensors that are highly sensitive to changes on the earth’s surface 

can image at any time of the day and in any weather conditions  (Stramondo et al. 2006). Whereas, optical sensors 

can provide us with easy-to-understand surface information. Conventional methods of disaster damage mapping using 

these sensors involved comparing the respective image from before and after the disaster (Natsuaki et al. 2018; Syifa, 

Kadavi, and Lee 2019; Tamkuan and Nagai 2017). Previous studies (De Alban et al. 2018) on the fusion of both 

sensors have shown that integrating data from both sensors can increase the detection sensitivity and provide more 

accurate information about the area under observation. Analyzing the large amount of information provided by the 

sensors is labor-intensive. Thus, we propose the use of a neural network that combines features from both SAR and 

optical sensors. Since we use features from two sensors in this study, it is necessary to evaluate what features from 

which sensor are prominent, which we accomplish by using inverse-mapping dynamics. 

 

2.  SAR AND OPTICAL DATA FUSION BY USING A FULLY CONNECTED NEURAL NETWORK 

 

2.1 Study area 

 

An earthquake of magnitude 7.5 struck the coast of Sulawesi in Indonesia on September 28, 2018. Among other 

damages, this earthquake was responsible for generating multiple landslides and a tsunami. The epicenter was the 

Donggala Regency, 80km north of the city of Palu. The greatest loss of life in this disaster can be attributed to the 

landslides that led to voluminous debris flow (Bradley et al. 2019). In this paper, we generate the post-disaster map 

of the Sidera region shown in Figure 1, where large-scale soil liquefication led to high fatalities (Goda et al. 2019).  
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Figure  1:  Map of  Sidera region in Sulawesi, Indonesia, depicting the landslide (Copernicus Emergency 

Management Service). 

 

2.2 Dataset 

 

The damages were mapped using the L-band SAR sensor Advanced Land Observation Satellite-2 (ALOS-2) of the 

Japan Aerospace Exploration Agency (JAXA) and the optical Sentinel-2 sensor of the  European  Space  Agency  

(ESA). The various datasets used are described in Table 1. 

 

Table 1: Datasets used in this study. 

 

Satellite Type Date 
 

ALOS - 2 SAR 11 May 2018 Pre-Event 

ALOS - 2 SAR 17 Aug 2018 Pre-Event 

Sentinel - 2 Optical 02 October 2018 Pre-Event 

Sentinel - 2 Optical 27 September 2018 Post-Event 

  ALOS  - 2 SAR 12 October 2018 Post-Event 

 

2.3 Feature Extraction 

 

We extracted features that are considered informative for damage detection from SAR and optical data. The pre-

processing steps have been illustrated in Figure 2. The SAR data were obtained in Horizontal-Horizontal (HH) and 

Horizontal-Vertical (HV) polarizations. Thus from the SAR data, intensity and coherence were extracted in both 

polarization, whereas from the optical sensor Normalised Difference Vegetation Index (NDVI),  Normalized  

Difference  Building  Index  (NDBI), and the Build-Up index (BUI) were extracted. All the features were extracted 

both before and after the disaster. 

• Intensity is the backscattering received by the SAR sensor. Comparing the intensity before and after the 

disaster can provide us with useful information about the disaster (Ge et al. 2019), given as 

 

Intensity = (Amplitude)2 

(1) 

• Coherence is a parameter that depicts the stability of a region, subtle changes in the surface can be detected 

with high levels of accuracy using this feature (Havivi et al. 2018). It is given as  

 

Coherence =  
|〈(𝑺)∗𝑷〉|

√〈(𝑷)∗𝑷〉 〈(𝑺)∗𝑺〉  
 

                                                           (2) 

Where P and S represent horizontally or vertically received electric fields in vectors obtained by primary 
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and secondary observations, and (·)∗ above them represents the complex conjugate, and the bracket denotes 

the spatial average for 3×3 window. 

 

• NDVI is an index obtained from optical data and classifies the area based on the vegetation. It is given by 

the contribution of the satellite bands corresponding to the Red wavelength and Near-Infrared (NIR) 

wavelength. Red and NIR bands correspond to Band-4 and Band-8 of Sentinel-2, respectively (Kuc and 

Chormański 2019). 

 

NDVI =
NIR − Red

NIR + Red
 

                                                                    (3) 

• NDBI is an index that highlights the urban areas in the optical data and is given by the normalization of the 

Short-Wave-Infra-Red (SWIR) and Near Infra-Red (NIR) wavelengths, Band-11 of Sentinel -2 corresponds 

to the SWIR wavelength  (Osgouei et al. 2019), NDBI is calculated as 

 

NDVI =
SWIR − NIR

SWIR +  NIR
 

                                            (4) 

• BUI is the index for the analysis of urban patterns using NDVI and NDBI.  A  higher value of a pixel in this 

index indicates a  higher possibility that it represents a  built-up area (Bhatti and Tripathi 2014),  which 

allows built-up areas to be mapped effectively. BUI is given as 

 

                                                                     BUI = NDBI − NDVI                                                                   
(5) 

To ensure geometric accuracy, the seven pre-seismic features and the seven post-seismic features were collocated so 

that all the corresponding pixels in the fourteen features are mapped to the same geographical location. Following 

this, the datasets were clipped to the coordinates of the AOI and normalized between -1 and +1. 

 

 
 

Figure 2: Pre-processing for SAR and optical raw data. 
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Figure 3: Forward processing neural network. 

 

2.4 Neural network classification 

 

Neural network modeling is a reliable tool for data classification that is applicable across several fields as these 

networks can analyze and learn complex data. In this work, we propose a neural network that estimates the land 

classification and predicts if the land type is damaged or not. 

As shown in Figure 3, the neural network is a multi-layer network with a 14-neuron input layer, 64-neuron hidden 

layer, and a 7-neuron output layer. The input layer is fed with pixel-by-pixel values of the fourteen feature images 

obtained after the pre-processing. At the output layer, the neural network classifies each pixel as one of the seven land 

type classes, namely, damaged forest, damaged irrigation field, damaged urban, undamaged forest, undamaged 

irrigation,  undamaged urban, and undamaged dryland regions. 

 

Considering 𝒙 =  [𝑥1 𝑥2… 𝑥𝑖 … 𝑥𝐼]
T  , 𝒚 =  [𝑦1 𝑦2… 𝑦𝑗 … 𝑦𝐽]

T
   and 𝒛 =  [𝑧1 𝑧2… 𝑧𝑘 … 𝑧𝐾]

T (T = transpose ) to  be 

input, hidden, and output signal respectively, and W1 and W2 to be the weights obtained after the learning phase, the 

values at the last layer of the neural network can be evaluated as  

 

𝒛 = 𝑓(𝐖𝟐𝒚) 

    =  𝑓(𝐖𝟐 𝑓(𝐖𝟏𝒙))                                                                          (6) 

 

where f represents the activation function working component-wise and defined by 

 

𝑓(𝑥) =  {

−log (−𝑥 − 1))           if 𝑥 < 0
0                                      if 𝑥 = 0
log  (𝑥 + 1)                   if 𝑥 > 0 

                                                                 (7) 

 

 

The rationale for not using the conventionally used activation functions such as tanh or  ReLU is that the use of these 

activation functions led to a limited range of inversely input values in the inverse mapping, which can be avoided by 

using the modified logarithmic function defined in (7). The neural network was trained on 3970 pixels of the Sidera 

AOI, shown enclosed in the black boxes in Figure 4, 794 pixels of which are used to validate the network. The network 

was trained for 1000 epochs. The ground-truth classes were derived from the land classification published in Bradley 

et al. 2019 and modified for damaged areas based on data from Copernicus Emergency Management Service. 



 

 
The 42nd Asian Conference on Remote Sensing (ACRS2021) 

22-24th November, 2021 in Can Tho University, Can Tho city, Vietnam 

 

 
 

Figure 4: Land classification ground truth of the Sidera AOI (modified from Bradley et al. 2019). 

 

Post-training, the neural network was applied on all the pixels of the AOI, and each pixel was classified as one of the 

seven landtypes. 

 

2.5 Inverse-mapping dynamics  

 

Inverse mapping is dynamics that traces which input is significant for which output by paying attention to the signal 

flow of the network. In this process, the values obtained at the winning node k̂, of the forward neural network was 

fed to the same node at the input of the inverse mapping, as shown in Figure 5, while all the other nodes were fed 

with zeros. This was done to suppress any influence that could be introduced by the non-significant classes. The 

output values can be obtained as   

 

 𝒙 =  𝐖𝟏
T𝑓−1(𝐖𝟐

T𝑓−1( 𝒛̃)) 
 (8) 

Where 𝒛̃ =  [0 0… 𝑧𝑘 …  0]T  is the modified output values of the forward processing network fed as an input to the 

inverse-mapping network,  x̃  is the output of the inverse-mapping network, and the inverse activation function 𝑓−1 

is defined as 

 

𝑓−1 (𝑥) =  {
−e−x + 1              if 𝑥 < 0
0                             if 𝑥 = 0
 e𝑥 − 1                   if 𝑥 > 0 

 

(9) 

Inverse-mapping is performed for all the pixels, and the features that showed high significance are determined by the 

use of box and whisker plots. 
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Figure 5: Inverse-mapping network. 

 

3.  RESULTS 

 

3.1 Pre-processing results 

 

Table 2 illustrates the features extracted from the multiple sensors. After the disaster, an increase in the brightness 

can be observed in areas affected by the calamity for the SAR intensity feature in both HH and HV polarization. 

Additionally, loss in coherence can be observed for the same region in both polarizations. In the case of the optical 

parameters as well, changes can be observed in the features post the disaster. NDVI tends to decrease in regions that 

had a loss of vegetation following the disaster.  Furthermore, the NDBI and BUI increased in landslide-affected areas 

as the vegetated land got converted to barren land. 
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Table 2: The images obtained after pre-processing, that are used as input to the neural network. 

 

Features Pre-event image Post-event image 

 

 

RGB reference 

image 

  
 

 

Intensity HH 

  
 

 

Intensity HV 

  
 

 

Coherence HH 

  
 

 

Coherence HV 

  
 

 

NDVI 

  
 

 

NDBI 

  
 

 

BUI 
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Figure 6: Training and validation accuracy of neural network. 

 

 
Figure 7: Neural network land classification result. 

 

3.2 Classification results 

 

Figure 6 shows the training and validation accuracy of the neural network. The network obtained 90.11% and 88.04% 

training and validation accuracy, respectively.  Figure 7 illustrates the result of the neural network. Comparing this 

result with the ground truth in Figure 4, it can be observed that two landslide regions in this AOI were well detected 

by the neural network, and overall the neural network is able to classify the regions accurately. 
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Figure 8: Inverse-mapping results for the damaged urban class. 

 

3.3 Inverse-mapping results 

 

Box and whisker plots were generated for each pixel. The significance of the features is illustrated by the density of 

the pixels near -1 or +1. Figure 8 shows the inverse-mapping output for the pixels classified as damaged urban. It 

can be observed that the pre-seismic BUI, pre-seismic coherence in HV polarization, and post-seismic NDBI show 

prominence in the detection of this class since they distribute near -1 or +1. 

 

4. Discussion  

 

Classification map was generated using features extracted from both ALOS-2 and Sentinel-2 data. The classification 

divided the land into seven classes. Through a visual inspection of the ground truth and the classification map, it can 

be seen that damaged areas were detected quite well, particularly in the detection of the landslide shape.  NDBI, BUI, 

and coherence are independently considered to be good indicators of detecting changes in urban areas (Bhatti and 

Tripathi 2014; Natsuaki et al. 2018; Zha, Gao, and Ni 2003). In this study, it can be observed that these parameters 

worked collaboratively in urban damage detection.  This method was applied to various AOI, and consistency in the 

results was observed. Traditionally, pre-seismic and post-seismic images of one feature are used for damage 

assessment.  A noteworthy observation here is that complementary features do not work together when used with 

other features. Investigation of this observation can be the future scope of this work. 

 

5. Conclusion 

 

In this paper, we proposed the neural network that combines the capabilities of various damage indicating features 

obtained from SAR and optical sensors to estimate the damages of the Sidera region. The combination of two sensors 

was found to be effective for land type detection and gave us consistent and reasonable results. Moreover, through 

this study, we were able to identify the relevance of these features to damage assessment. It was observed that features 

that independently contribute to damage detection of a particular class collaboratively determined that specific class. 

The features deemed as significant belong to both SAR and optical sensors, highlighting the necessity of sensor 

integration. This study illustrated that the synergetic use of multiple sensors could provide us with significant 

information that can help us understand the landscape dynamics better. 
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